Tabela ASCII é uma codificação de caracteres de oito bits baseada no alfabeto inglês. Os códigos ASCII representam texto em computadores, equipamentos de comunicação, entre outros dispositivos que trabalham com texto. Desenvolvida a partir de 1960, grande parte das codificações de caracteres modernas a herdaram como base. A codificação define 128 caracteres, preenchendo completamente os sete bits disponíveis. Desses, 33 não são imprimíveis, como caracteres de controle actualmente não utilizáveis para edição de texto porem amplamente utilizado em dispositivos de comunicação, que afectam o processamento do texto. Excepto pelo caractere de espaço, o restante é composto por caracteres imprimíveis.
Conversão Decimal >> Binário
Números Inteiros
A conversão do número inteiro, de decimal para binário, será feita da direita para a esquerda, isto é, determina-se primeiro o algarismos das unidades ( o que vai ser multiplicado por 20 ) , em seguida o segundo algarismo da direita ( o que vai ser multiplicado por 21 ) etc...
A questão chave, por incrível que pareça, é observar se o número é par ou ímpar. Em binário, o número par termina em 0 e o ímpar em 1. Assim determina-se o algarismo da direita, pela simples divisão do número por dois; se o resto for 0 (número par) o algarismo da direita é 0; se o resto for 1 (número ímpar) o algarismo da direita é 1.
Por outro lado, é bom lembrar que, na base dez, ao se dividir um número por dez, basta levar a vírgula para a esquerda. Na base dois, ao se dividir um número por dois, basta levar a vírgula para a esquerda. Assim, para se determinar o segundo algarismo, do número em binário, basta lembrar que ele é a parte inteira do número original dividido por dois, abandonado o resto.
Vamos converter 25 de decimal para binário.
Binários a decimais
Dado um número N, binário, para expressá-lo em decimal, deve-se escrever cada número que o compõe (bit), multiplicado pela base do sistema (base = 2), elevado à posição que ocupa. Uma posição à esquerda da vírgula representa uma potência positiva e à direita, uma potência negativa. A soma de cada multiplicação de cada dígito binário pelo valor das potências resulta no número real representado. Exemplo:
1011(binário)
1 × 2³ + 0 × 2² + 1 × 21 + 1 × 20 = 11
Portanto, 1011 é 11 em decimal
O Alfabeto em código binário
Letra | Código Binário |
---|---|